Applied X-ray spectroscopy


Where is my titanium going? Testing the stability of TiW barriers

Hot off the press! Check out our latest collaboration with colleagues from Infineon Technologies Austria, KAI and HarwellXPS, exploring the interface stability of TiW/Cu heterojunctions using SXPS and HAXPES. This work marks the second publication in a series by Curran Kalha on TiW diffusion barriers and continues a long and fruitful collaboration with beamline I09 at the Diamond Light Source.

Diffusion barriers are essential components in power semiconductor devices and are designed to isolate metallisation schemes from the semiconductor devices. The binary alloy of titanium-tungsten (TiW) is an established diffusion barrier for copper metallisation schemes. However, little has been established regarding the chemical state of the TiW/Cu interface or the possible degradation mechanisms of the barrier during annealing.

In our recent paper in Journal of Applied Physics (the preprint is also on arxiv), we show that the TiW alloy is an excellent barrier for copper metallisation schemes, successfully isolating the copper after annealing for as long as 5 h at 400°C using both synchrotron-based SXPS and HAXPES. Under thermal stress the barrier starts to degrade via the out-diffusion of Ti, but using laboratory-based SXPS at HarwellXPS it is clear that the Ti quantity lost in the diffusion barrier does not significantly impact the performance of the barrier.

Stay tuned for more TiW research and the completion of Curran’s TiW trilogy (and maybe a prequel or origin story too).


Implementing inorganic materials in affordable, flexible biosensor platforms

Integrating inorganic materials, that show great potential for sensing application, into platforms that are suitable for the industrial production of cheap, non-invasive sensors is of great importance for their broad implementation. In our recent open access paper in Materials Research Express, we show the successful integration of copper oxide based electrodes for glucose sensing on printed circuit board (PCB) technology. Together with collaborators at the University of Bath led by Dr Despina Moschou we could show that direct oxidation on PCB compatible substrates is possible and how production parameters including annealing duration and temperature influence the surface morphology and chemistry as well as influencing the resulting electrochemical sensing properties.

The work in the paper is based predominantly on the Masters research of Shijia Liu and Ayse Ay, who did their Masters projects as part of their MSc in Advanced Materials Science and Engineering degrees in the group in the academic year 2017/18. The research also included the involvement of two UROP (Undergraduate Research Opportunities Programme) students, Qiaochu Luo and Xiangqi Hu.


Polarisation dependent HAXPES – New paper out

A little while ago now Chemical Physics Letters published our paper on polarisation dependent hard X-ray photoelectron spectroscopy (HAXPES). This technique is still relatively new and not many publications are available. It shows particular potential for the identification of s states in valence band. The experiments were undertaken at the Taiwanese beamline BL12XU at SPring-8.

You can find the full article on the Chem. Phys. Lett. website

chemphyslett


New paper in press – Ga:In2O3

Finally, this beast of a paper has been accepted and is currently in press. You can already find the accepted manuscript on the Elsevier website. After a long review process I am very relieved that this is finally done. Now waiting for the proof and then the final version will hopefully be available soon. But with 19 figures and the current manuscript having a whopping 51 pages this might take a moment or two.

paper