Hot off the press! Check out our latest collaboration with colleagues from Infineon Technologies Austria, KAI and HarwellXPS, exploring the interface stability of TiW/Cu heterojunctions using SXPS and HAXPES. This work marks the second publication in a series by Curran Kalha on TiW diffusion barriers and continues a long and fruitful collaboration with beamline I09 at the Diamond Light Source.
Diffusion barriers are essential components in power semiconductor devices and are designed to isolate metallisation schemes from the semiconductor devices. The binary alloy of titanium-tungsten (TiW) is an established diffusion barrier for copper metallisation schemes. However, little has been established regarding the chemical state of the TiW/Cu interface or the possible degradation mechanisms of the barrier during annealing.
In our recent paper in Journal of Applied Physics (the preprint is also on arxiv), we show that the TiW alloy is an excellent barrier for copper metallisation schemes, successfully isolating the copper after annealing for as long as 5 h at 400°C using both synchrotron-based SXPS and HAXPES. Under thermal stress the barrier starts to degrade via the out-diffusion of Ti, but using laboratory-based SXPS at HarwellXPS it is clear that the Ti quantity lost in the diffusion barrier does not significantly impact the performance of the barrier.
Stay tuned for more TiW research and the completion of Curran’s TiW trilogy (and maybe a prequel or origin story too).
